首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1360篇
  免费   60篇
  国内免费   2篇
  2023年   12篇
  2022年   10篇
  2021年   48篇
  2020年   24篇
  2019年   35篇
  2018年   36篇
  2017年   28篇
  2016年   48篇
  2015年   66篇
  2014年   84篇
  2013年   120篇
  2012年   131篇
  2011年   118篇
  2010年   64篇
  2009年   63篇
  2008年   84篇
  2007年   79篇
  2006年   59篇
  2005年   61篇
  2004年   35篇
  2003年   27篇
  2002年   32篇
  2001年   21篇
  2000年   12篇
  1999年   8篇
  1998年   5篇
  1997年   7篇
  1996年   7篇
  1995年   5篇
  1994年   5篇
  1993年   3篇
  1992年   5篇
  1991年   4篇
  1990年   8篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   8篇
  1984年   3篇
  1983年   4篇
  1982年   5篇
  1981年   6篇
  1980年   3篇
  1979年   5篇
  1978年   4篇
  1977年   5篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
  1965年   2篇
排序方式: 共有1422条查询结果,搜索用时 62 毫秒
31.
Molecular Biology Reports - Introns experience lesser selection pressure, thus are liable for higher polymorphism. Intron Length Polymorphic (ILP) markers designed from exon-flanking introns...  相似文献   
32.
Sharma  Himanshu  Kumar  Pankaj  Singh  Abhishek  Aggarwal  Kanika  Roy  Joy  Sharma  Vikas  Rawat  Sandeep 《Molecular biology reports》2020,47(4):2447-2457
Molecular Biology Reports - The genus Rhododendron, known for large impressive flowers is widely distributed throughout the world. Rhododendrons have limited genetic information, despite of...  相似文献   
33.
Proteome analysis of Enterobacter ludwigii PAS1 provide a powerful set of tool to study the cold shock proteins along with that combination of bioinformatics is useful for interpretation of comparative results from many species. There is a considerable interest in the use of psychrotrophic bacteria for nitrogen fixation, especially at hilly regions, thus better understanding of cold adaptation mechanisms too. The psychrotrophic E. ludwigii PAS1 grown at 30 and 4 °C, isolated from Himalaya soil was undertaken for proteomic responses during optimal and cold shock conditions. Comparative proteomic analyses using two-dimensional gel electrophoresis (2-DE) and MALDI-TOF/TOF MS revealed the presence of Cold shock protein E (CspE). Three-dimensional structure of CspE of E. ludwigii PAS1 divulge the presence of five antiparallel β-sheets forming a β-barrel structure with surface exposed aromatic and basic residues that were responsible for nucleic acid binding and also reveals the presence of highly conserved nucleic acid-binding motifs RNP1 and RNP2 in Csp family.  相似文献   
34.
Industrial effluents from jute, paper, pulp mills and sewage from households are regularly discharged into the Hooghly River. It generates a potential risk for both humans and animals of the area concerned. In the present study, water quality of the Hooghly River passing by the site of a growing township (Naihati, North 24 Parganas, West Bengal, India) was assessed throughout the year 2010 on the basis of the data collected on the physicochemical and microbiological parameters. The water samples collected on each month revealed the presence of higher amount of coliform bacteria, Streptococcus sp. and Escherichia coli, than the standard limit. Different physicochemical parameters like chemical oxygen demand, biological oxygen demand, dissolved oxygen (DO), total suspended solids, total dissolved solids (TDS), total hardness, alkalinity, chlorinity, nitrate and nitrite of the water at the sampling sites were found to be considerably higher than the levels standardized by WHO (2006). It was found that the relative abundance of Streptococcus and E. coli was influenced by two independent variables (water quality parameters), namely, DO and TDS. The abundance of coliform bacteria in the water sample warrants the adoption of proper measures to reduce the pollution level at the point source on way of scientific disposal of industrial effluents.  相似文献   
35.
Epigenetic mechanisms of plant stress responses and adaptation   总被引:3,自引:0,他引:3  
Epigenetics has become one of the hottest topics of research in plant functional genomics since it appears promising in deciphering and imparting stress-adaptive potential in crops and other plant species. Recently, numerous studies have provided new insights into the epigenetic control of stress adaptation. Epigenetic control of stress-induced phenotypic response of plants involves gene regulation. Growing evidence suggest that methylation of DNA in response to stress leads to the variation in phenotype. Transposon mobility, siRNA-mediated methylation and host methyltransferase activation have been implicated in this process. This review presents the current status of epigenetics of plant stress responses with a view to use this knowledge towards engineering plants for stress tolerance.  相似文献   
36.
37.
Agrobacterium-mediated transformation of indica rice varieties has been quite difficult as these are recalcitrant to in vitro responses. In the present study, we established a high-efficiency Agrobacterium tumefaciens-mediated transformation system of rice (Oryza sativa L. ssp. indica) cv. IR-64, Lalat, and IET-4786. Agrobacterium strain EHA-101 harboring binary vector pIG121-Hm, containing a gene encoding for β-glucuronidase (GUS) and hygromycin resistance, was used in the transformation experiments. Manipulation of different concentrations of acetosyringone, days of co-culture period, bacterial suspension of different optical densities (ODs), and the concentrations of l-cysteine in liquid followed by solid co-culture medium was done for establishing the protocol. Among the different co-culture periods, 5 days of co-culture with bacterial cells (OD600 nm?=?0.5–0.8) promoted the highest frequency of transformation (83.04 %) in medium containing l-cysteine (400 mg l?1). Putative transformed plants were analyzed for the presence of a transgene through genomic PCR and GUS histochemical analyses. Our results also suggest that different cultural conditions and the addition of l-cysteine in the co-culture medium improve the Agrobacterium-mediated transformation frequencies from an average of 12.82 % to 33.33 % in different indica rice cultivars.  相似文献   
38.
4-Hydroxynonenal (HNE) has been widely implicated in the mechanisms of oxidant-induced toxicity, but the detrimental effects of HNE associated with DNA damage or cell cycle arrest have not been thoroughly studied. Here we demonstrate for the first time that HNE caused G2/M cell cycle arrest of hepatocellular carcinoma HepG2 (p53 wild type) and Hep3B (p53 null) cells that was accompanied with decreased expression of CDK1 and cyclin B1 and activation of p21 in a p53-independent manner. HNE treatment suppressed the Cdc25C level, which led to inactivation of CDK1. HNE-induced phosphorylation of Cdc25C at Ser-216 resulted in its translocation from nucleus to cytoplasm, thereby facilitating its degradation via the ubiquitin-mediated proteasomal pathway. This phosphorylation of Cdc25C was regulated by activation of the ataxia telangiectasia and Rad3-related protein (ATR)/checkpoint kinase 1 (Chk1) pathway. The role of HNE in the DNA double strand break was strongly suggested by a remarkable increase in comet tail formation and H2A.X phosphorylation in HNE-treated cells in vitro. This was supported by increased in vivo phosphorylation of H2A.X in mGsta4 null mice that have impaired HNE metabolism and increased HNE levels in tissues. HNE-mediated ATR/Chk1 signaling was inhibited by ATR kinase inhibitor (caffeine). Additionally, most of the signaling effects of HNE on cell cycle arrest were attenuated in hGSTA4 transfected cells, thereby indicating the involvement of HNE in these events. A novel role of GSTA4-4 in the maintenance of genomic integrity is also suggested.  相似文献   
39.
Kartagener’s syndrome is a very rare congenital malformation comprising of a classic triad of sinusitis, situs inversus and bronchiectasis. Primary ciliary dyskinesia is a genetic disorder with manifestations present from early life and this distinguishes it from acquired mucociliary disorders. Approximately one half of patients with primary ciliary dyskinesia have situs inversus and, thus are having Kartagener syndrome. We present a case of 12 year old boy with sinusitis, situs inversus and bronchiectasis. The correct diagnosis of this rare congenital autosomal recessive disorder in early life is important in the overall prognosis of the syndrome, as many of the complications can be prevented if timely management is instituted, as was done in this in this case.  相似文献   
40.

Background

Sterol glycosyltrnasferases (SGT) are enzymes that glycosylate sterols which play important role in plant adaptation to stress and are medicinally important in plants like Withania somnifera. The present study aims to find the role of WsSGTL1 which is a sterol glycosyltransferase from W. somnifera, in plant’s adaptation to abiotic stress.

Methodology

The WsSGTL1 gene was transformed in Arabidopsis thaliana through Agrobacterium mediated transformation, using the binary vector pBI121, by floral dip method. The phenotypic and physiological parameters like germination, root length, shoot weight, relative electrolyte conductivity, MDA content, SOD levels, relative electrolyte leakage and chlorophyll measurements were compared between transgenic and wild type Arabidopsis plants under different abiotic stresses - salt, heat and cold. Biochemical analysis was done by HPLC-TLC and radiolabelled enzyme assay. The promoter of the WsSGTL1 gene was cloned by using Genome Walker kit (Clontech, USA) and the 3D structures were predicted by using Discovery Studio Ver. 2.5.

Results

The WsSGTL1 transgenic plants were confirmed to be single copy by Southern and homozygous by segregation analysis. As compared to WT, the transgenic plants showed better germination, salt tolerance, heat and cold tolerance. The level of the transgene WsSGTL1 was elevated in heat, cold and salt stress along with other marker genes such as HSP70, HSP90, RD29, SOS3 and LEA4-5. Biochemical analysis showed the formation of sterol glycosides and increase in enzyme activity. When the promoter of WsSGTL1 gene was cloned from W. somnifera and sequenced, it contained stress responsive elements. Bioinformatics analysis of the 3D structure of the WsSGTL1 protein showed functional similarity with sterol glycosyltransferase AtSGT of A. thaliana.

Conclusions

Transformation of WsSGTL1 gene in A. thaliana conferred abiotic stress tolerance. The promoter of the gene in W.somnifera was found to have stress responsive elements. The 3D structure showed functional similarity with sterol glycosyltransferases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号